United States Patent

US010505736B1

(12) ao) Patent No.: US 10,505,736 B1
Meixler 45) Date of Patent: Dec. 10, 2019
(54) REMOTE CYBER SECURITY VALIDATION 7,565,543 B1* 7/2009 Mungale GO6F 21/31
SYSTEM 713/176
9,635,041 B1* 4/2017 Warman HO041L. 41/50
N :
(71) Applicant: Michael A Meixler, New Hope, PA 2007/0174915 AL* 72007 Gribble oo G06F7§égz
(US) 2007/0192854 Al* 82007 Kelley ...cccococommorn. GOGF 21/53
726/22
(72) Inventor: Michael A Meixler, New Hope, PA 2009/0287931 Al* 11/2009 Kinsella GO6F 21/64
(US) 713/175
2011/0016169 A1* 1/2011 Cahillcccoee GOGF 21/54
(73) Assignee: Meixler Technologies, Inc., New Hope, 709/203
2012/0198234 Al* 82012 Chung HOAL 9/3247
PA (US) 713/171
N .
(*) Notice: Subject to any disclaimer, the term of this 2013/0262851 AL* 102013 Hirvonen ... HO4L7?§;}§3
patent is extended or adjusted under 35 2015/0195253 Al* 7/2015 Ander ... HOAL 63/0281
U.S.C. 154(b) by 0 days. 726/12
2016/0294561 Al* 10/2016 Baseccceeeenen. GOGF 21/64
(21) Appl. No.: 16/046,044 (Continued)
(22) Tiled: Jul. 26, 2018 Primary Examiner — Aravind K Moorthy
(74) Attorney, Agent, or Firm — Richards Patent Law,
(51) Imt.CL P.C.
HO4L 29/06 (2006.01)
Ho4L 9/32 (2006.01) (57) ABSTRACT
GOGF 12/14 (2006.01) A method of verifying the integrity of a downloadable file
(52) US. CL comprising the steps of requesting a download of a file via
CPC ... HO4L 9/3226 (2013.01); HO4L 9/3236 a download requesting device comprising an electronic
(2013.01); HO4L 9/3247 (2013.01); HO4L device including a web browsing application through which
637123 (2013.01) the download is requested and a web-browser memory;
(58) Field of Classification Search downloading the file into the web-browser memory while
CPC ... HO4L 9/3226; HO4L 9/3236; HO4L 63/123; preventing the file from being opened or executed by the
HO4L 9/3247 download requesting device; within the web browsing appli-
USPC .ot 713/188, 165, 168; 726/24 cation, analyzing the file to derive a cryptographic value of
See application file for complete search history. the file; within the web browsing application, comparing the
derived cryptographic value of the file with a reference value
(56) References Cited associated with the file that is stored in a memory accessible

U.S. PATENT DOCUMENTS

6,314,451 B1* 11/2001 Landsman G06Q 30/02
709/203
6,418,472 B1* 7/2002 Mi ...coeverininnnn GO6F 21/6218
709/202

@)

1 | Temporary
Processor & Memory
5 5
101 102
Networking | | Permanent
Adapter Memory
5 5
103 104

by the web browsing application; and only when the derived
cryptographic value of the file matches the reference value
associated with the file, enabling the file to be opened, saved,
or executed by the download requesting device.

18 Claims, 7 Drawing Sheets

/—10

150

I O

~—— WWW-——

|Prowssor‘ 1 Memory I

151 152

Networking
Adapter

g
153

US 10,505,736 B1
Page 2

(56)

U.S. PATENT DOCUMENTS

2017/0193464 Al*
2018/0018468 Al*
2018/0124007 Al*
2018/0205554 Al*
2019/0306248 Al*

* cited by examiner

References Cited

7/2017 Sher
1/2018 Williams .

5/2018 Ploch ...
7/2018 Blinn ...
10/2019 Swarangi

GO06Q 20/065

.. GO6F 21/602

. HO4L 51/22
HO4L 9/3247

......... HO4L 67/14

US 10,505,736 B1

Sheet 1 of 7

Dec. 10, 2019

U.S. Patent

€al
g

Jaydepy
BunJomeN

¢gl
G

Gl

f

Aowsy

J0SS300.1d

/) oo

ES

051

ovl

l OId

144]" €0l
§ §
Aowsy Jaydepy
Jusueuwlad | | BunyomaN
¢ol 10]
5 5
Aows|p J0SSa20.1d
Aejodwa|

Q00

oLl

U.S. Patent

Dec. 10, 2019 Sheet 2 of 7

Requesting download
of afile

— 201

Downloading the file into
the web-browser memory

—202

Analyzing the file to derive
a cryptographic value

—203

Comparing the derived

cryptographic value of

the file with a reference
cryptographic value

—204

Enabling the file
to be accessed

—205

FIG. 2

US 10,505,736 B1

US 10,505,736 B1

Sheet 3 of 7

Dec. 10, 2019

U.S. Patent

€Gl
g

Jaydepy
BunIoMm}eN

r4°1
g

Gl

4

Aows|y

108S200.1d

omvuul

ecl
G

Jaydepy
BuyiomaN

ccl
g

(74°
C

¢ Old

Aowis

J10SS800.d

ONFH

QQ// oo

€0l
g

Jaydepy
BupIoMm}eN

¢0l
4

10l
4

Aiowa|p

1088820.1d

.

-

oy

m\

\fem

j

s
| s

COoOo

0]%5

U.S. Patent

Dec. 10,2019 Sheet 4 of 7

Requesting download
of afile

—401

Downloading the file to
intermediate server

—402

Analyzing the file to derive
a cryptographic value

—403

Comparing the derived

cryptographic value of

the file with a reference
cryptographic value

—404

Enabling the file
to be accessed

—405

Downloading the file to
the end user device

—406

FIG. 4

US 10,505,736 B1

US 10,505,736 B1

Sheet 5 of 7

Dec. 10, 2019

U.S. Patent

G 9l

10S

314 Peojumog

<l oL
aNes Jo Uado 0} oA Joj Sj0fBliene o au} SYewW JESMOId dam JnoA [Usuy AjUQ "aAode Usey pejoadxa aUp SSUDJeW 8]l PSPROJUMOP U} JO USEY 9GZHS SUb JeUs AjLisA Ul ‘Sjl pepeojusmog
Al JO USEY 9G7YHS SUp S5E} Ualj) 150U S)0ULISI SU L0 KIOWISL GIUI Sjl) SU) PECIUMOP JSII (I JESMOIA am Jnok ul Buliuni jduosens] apis-Jusip ‘all a4y jo Awbeiul sy AjLisa of

206 i 88/CS/PP8UIEY.08181C19G | CEPARIFEA0IA LOSIOTI0. L. LS8 LESPGIEEY 3] PINOYS B[l SR JO USEY 9GTYHS oﬁ_

‘oo nfuyysdiy 3soy ajowes auj wioy Badf Yes a1y sy peojumop o} Mojed UoRNG &U} 3010

‘payLian s1 Aubajul (J1 Ajuo pue) 4 Jasn 0} s|gejieA. a)1} axell pue ‘ajiy Jo Ajubajul AjLaA SOy 0wl Wolj 9)i peojumoq
UOIJeJJLIOA 3_._@3:_ pue peojumo(°]i4 9J0Wdy pajewolny Josmo.uag-u|

,H_ e)@)e)) @ W00 Upay-Ie Xl g) (@3] ooo

{
Ol

US 10,505,736 B1

Sheet 6 of 7

Dec. 10, 2019

U.S. Patent

9 9Ol

109

)

314 3RES /URd0

MOJBq YUl 843 BuplD Aq SjL 8U) AeS Jo Uado 0} pasooid MOU Uea NOA "PaliLia USeH

700~ "| $8L25/PPRUOYEY.081812)8G) ZBOPIYEU0IA 95H0ZI0LL L/SIBYZ | E9PYBEY POPEOIIMOD 3l 0 USBY 957 VHS
BaiproTuoLueo Inbury/:sdny woy pepeojunop Badlypes

314 peoumog

2l s
aNes Jo Uado 0} oK Joj Sj0fBliene sl aU) SYew JSSMOId Gam JNoA [Uauy AUQ SA0qe Usey pajoadye aUj SaUDJew 8|l PopBojuMap U JO USeY 95ZHS SUs 12U Ajlis Uy ‘8l pepeojumoq
Al JO USEY 9G7YYHS SUp S5E} Ualj) 150U S)0ULISI U L0 KIOWISL GIUI Sjl) SU) PECIUMOP JSII (I JESMOIA am Jnok ul Buiiuni jduosens] apis-Jusip ‘all a4y jo Aubaiul sy AjLisa of

206 i 88/CS/PP8UIEY.08181C19G | CEPARIFEA0IALOSIOZI0. L. LS8 LESPGIBEY 3] PINOYS B[l SR JO USEY 9GTVHS oE_

‘oo nfuyysdiy soy ajowes auj wioy Badf Yes a1y sy peojumop o} Mojed UoRNG &U} 010

‘payLian s1 Aubajul (J1 Ajuo pue) 4 Jasn 0} s|gejieA. a)1} axell pue ‘ajiy Jo Ajubajul AjLaA SOy 0wl Wolj 9)i peojumoq
UOIJeJJLIOA 3_._@3:_ pue peojumo(°]i4 9J0Wdy pajewolny Josmo.uag-u|

,H_ e)@)e)) @ W00 Upay-Ie Xl g) (@3] ooo

{
Ol

US 10,505,736 B1

Sheet 7 of 7

Dec. 10, 2019

U.S. Patent

JRSE o

(wesso J(@](g])(-lz] (@])le]e]l-O EFEEILE)
- Bodlypes Q) 000 .

MOJBA YUl 843 Buiolo Aq ajl Up SAES Jo Uado 0} pasooid MOU UED NOA "PaliLiaA USeH

88/2G/PPRAOYE Y081 81216 | ZERARIFEA0IR.L95107I0LL L 1G98YZ L EP0BGY PAPEOJUMOP SJI JO UsEY 9GZYHS
BaimproTuo oo nBury/:sdny woy papeojunop Badlyies

314 Peojumog

S s
aAes Jo Uado 0} oK 1o} Sjofeliene Sl aUj) SXeLU JeSMOIq dam Jno [sy} AluQ *arode Usey paioadxe sl SauoleLl S|l PApec|umop au} JO USeY 9GZVHS U Jeu) AlLisn sy} ‘all papeojumoq
AU} JO USEY 9G7YHS U 8¥e) UaLp) ‘150U 10wl U Lo oWt Gjul Sji SU) PEOJUMOP 1SII (1w JoSMaIA dam JnoA ut Buiuury jduosenel spis-Jusiio ‘sl aup Jo Aubajul au) Ajliea of

88/7G/PP8AIYEY.08181.C19G | ZEPRFEA0ISA9GI0TI0LLLLSO8YT LESPIBEY 5] PINOUS SJl SR JO USEY 9GZYHS Sul

‘oo nBuyy:sdiy soy ajowes au wioy Badf Upes o1y aUj PEOJUMOP O} MO[SC UOHNG SU 301D

‘payLaA s1 AubBajul (J1 Ajuo pue) Ji Jesnh 0} s|ge]ieA. ajij ayew pue ‘ajl Jo Aubajul ALA IS0y 0wl Wol) 3]l peojumoq
uoinedljlLIoA b_._mwa:_ pue peojumo(3]i4 9j0Wy pajewolny Josmo.ag-uj

TE@E G oo P ONAS) (@3] 000|

{
0Ll

US 10,505,736 B1

1
REMOTE CYBER SECURITY VALIDATION
SYSTEM

BACKGROUND OF THE INVENTION

The present invention relates to the field of cyber security.
More specifically, the present disclosure describes a system
which automatically validates file downloads, web pages,
etc. utilizing file hashes and other cryptographic values.

It is common for organizations to make files available for
download to end users. Sometimes these files are available
through a website operated by an organization. Other times
these files are available through third-party websites. For
example, the United States Treasury makes numerous tax
forms and publications available for download through its
website. Similarly, technology companies often make soft-
ware programs and updates available to their customers as
downloadable files from the company’s website. Other
downloadable files, such as freeware, may be found at the
given software developer’s site, but may also be found on
one or more repositories of freeware available on the Inter-
net.

After downloading a file from a website, the user’s web
browser typically gives the user the option to either open the
file or save the file to their local system. One skilled in the
art may immediately recognize the inherent security risk—
execution of a malicious file may corrupt a user’s device.

As a security measure, a cryptographic hash of the file is
often published on the organization’s website, so that the
user can verify the integrity of the file, after downloading it,
by confirming that the actual hash of the file downloaded
matches the hash published on the site. For instance, com-
puter manufacturers such as Dell, Hewlett Packard, Apple,
etc. make numerous updates, drivers, and other types of files
available to their customers to download from their web
sites. Near the links to download these files, these manu-
facturers typically publish cryptographic hashes correspond-
ing to these files. These hashes are typically calculated using
a hashing algorithm such as MDS5, SHAI1, SHA256,
SHAS12, or another standard hashing algorithm.

While this process is very effective for verifying the
integrity of files, it is often not utilized. Many users do not
understand the process and may not have the tools or the
know-how to apply it. Even users that do understand how to
apply the process may find it too cumbersome or inefficient
and opt not to apply it. However, failure to apply this process
can result in a costly outcome if the file has been tampered
with by a malicious actor. Such outcomes do not only carry
monetary cost but also pose threats to local and national
security as well as potentially revealing sensitive personal
information.

As noted above, the fact that users are typically given the
option to open downloadable files directly from their hosted
location is a security risk. Accordingly, there is a need for an
automated cybersecurity system which utilizes file hashes
and other cryptographic values to verify the integrity of a
downloadable file prior to enabling a user to execute the file.

BRIEF SUMMARY OF THE INVENTION

To meet the needs described above and others, the present
disclosure describes a cybersecurity system which utilizes
file hashes to validate file downloads, webpages, etc. prior to
being saved, opened, or executed on the end user’s device.
Accordingly, the integrity of the file is validated prior to it
being a threat to a user’s device onto which it may be
downloaded or within which it may be executed.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one embodiment of the present invention, a short
JavaScript program is incorporated into a web page to
enable a user to safely download a file from a remote
location. When a user requests to download a file from the
web page, the program automatically executes to ensure the
integrity of the file before the user is able to access it via the
end user device. In a preferred embodiment of the program,
the program receives as inputs: (i) the name of the file; (ii)
the URL from where the file is to be downloaded; and (iii)
the expected hash of the file. These inputs are provided to the
program automatically from the web page, without involve-
ment by the user. The program downloads the file into
temporary memory from the URL, then derives the hash of
the file. If, and only if, the actual hash of the file matches the
expected hash of the file, the program makes the file
available to the user to open, save, or execute. If the actual
hash of the file does not match the expected hash of the file,
the user is alerted that the file may have been tampered with,
and the file is not made available to the user.

In a second embodiment, the logic for verifying the
integrity of a downloaded file implemented by way of
programming embedded in the web browser or a web
browser plug-in.

It is contemplated that hashes are not the only crypto-
graphic operation that may be used for veritying the integ-
rity of downloadable files, other cryptographic operations
can be used to verify the integrity of a file or webpage. For
example, digital signatures are another cryptographic opera-
tion that may be used in unison with or in place of file
hashes. Digital signatures are mathematical schemes for
presenting the authenticity of digital messages or documents
and are commonly used for software distribution, financial
transactions, contract management software, etc.

In yet other embodiments of the present invention, the
systems and methods described above for use within a web
browser are used in other end user programs. One notable
use is in email clients. Email attachments, embedded photos,
and other media rich message content are rife for transmittal
of viruses and other malware. The present system acts as a
barrier between an end user’s device and these potentially
harmful messages, validating each email and/or attachment
before allowing it to be downloaded through the end user’s
email client.

The system can also be used to verify the integrity of a
web page before the web page is opened in the user’s web
browser. For example, if an end user is sent a suspicious link,
the user can verify the integrity of the web page via the
system to check that the web page’s hash, digital
signature(s), digital certificate(s), etc. all check out before
directly loading the web page through the end user device.
Likewise, a trusted web page could be used to vouch for the
integrity of another web page via this method.

A goal of the present invention is to prevent hackers,
foreign governments, or anyone else from disseminating
files, web pages, emails, etc. that contain harmful or mis-
leading content. The use of file hashes, block chain tech-
nology, and other digital verification methods as described
herein are nearly impossible to break in modern computing.
However, many end users forgo such verification as it can be
cumbersome and also require some technological knowl-
edge lay persons lack. These lay persons may even be
unaware of the existence of file hash data or other methods
which currently exist to ensure files, webpages, and other
data have not been tampered with. The present system
enables such verification to take place automatically and in
an isolated environment which prevents many cybersecurity
attacks from occurring.

US 10,505,736 B1

3

An advantage of the present invention is that the verifi-
cation of a file, web page, etc. takes place in isolation from
the user’s sensitive data. This means that when an end user
choses, for example, to download an updated device driver
in the form of an executable file, the file is actually down-
loaded to temporary memory and/or a remote server first
with the system verifying the file’s hash data based off a
reference hash provided by the software provider (e.g., Dell,
Apple, etc.). If the file hashes match, the end user is then able
to save, open, or execute the file. If the hash is not verified,
the system informs the end user and purges the unverified
file from its memory. Thus, the present system acts as an
additional layer of protection for the end user.

Another advantage of the present invention is that it
automates an important but often bypassed task. Many
different forms of cybersecurity verification exist. From
digital signatures, to file hashes, to blockchain verification,
many steps can be taken to verify digital information.
However, it would be extremely impractical to conduct
multiple stages of manual verification upon a single file
download (e.g., check hashes and digital signatures) as the
time requirement to do so would greatly hamper the useful-
ness of digital content distribution. The present system
performs these verifications seamlessly behind the scenes,
with end users being provided an easy to understand inter-
face which prevents confusion.

Additional objects, advantages and novel features of the
examples will be set forth in part in the description which
follows, and in part will become apparent to those skilled in
the art upon examination of the following description and
the accompanying drawings or may be learned by produc-
tion or operation of the examples. The objects and advan-
tages of the concepts may be realized and attained by means
of the methodologies, instrumentalities and combinations
particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawing figures depict one or more implementations
in accord with the present concepts, by way of example only,
not by way of limitations. In the figures, like reference
numerals refer to the same or similar elements.

FIG. 1 is an overview diagram of a remote validation
cybersecurity system.

FIG. 2 is a flowchart which illustrates how a remote
validation cybersecurity system validates a file download.

FIG. 3 is an overview diagram of a remote validation
cybersecurity system featuring an intermediate server.

FIG. 4 is a flowchart which illustrates how a remote
validation cybersecurity system validates a file download.

FIG. 5 is an initialization webpage of the remote valida-
tion cybersecurity system.

FIG. 6 is a download enabled webpage of the remote
validation cybersecurity system.

FIG. 7 is a verified file opened upon an end user device.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is an overview diagram of a remote validation
cybersecurity system 10. As shown in FIG. 1, an end user
may access a web browser 110 via their end user device 100
(e.g., desktop computer, laptop, smartphone, tablet, etc.).
From the web browser 110 they may browse the internet 140
as normal, with the end user device 100 making contact with
various external servers 150 which host websites, file shares,
etc. When an end user elects to download digital content

10

15

20

25

30

35

40

45

50

55

60

65

4

(e.g., an image file, a webpage, an email, etc.) the remote
validation cybersecurity system 10 in this embodiment first
contacts the external server 150 which host the to-be-
downloaded content. Communication with the external
server 150 is carried out via the internet 140 in this example,
with the internal, temporary memory (e.g., RAM) 102 of the
end user device 100 acting as a sort of quarantine area for the
downloaded digital content. The content is held remotely to
the end user device(s) 100 long term memory (e.g., Hard
Disk Drive) 104 until the content’s hash information, digital
signature(s), etc. are confirmed by the system 10. Holding
the file remotely to the long-term memory 104 prevents
malicious files and code from accessing or acting upon the
end user device 100. The external server 150 may feature its
own processor 151, memory 152, and networking adapter
153 which enable it to communicate and host file down-
loads. The memory of the external server 150 may feature
the files to be downloaded and also one or more separate
databases of corresponding hash values and other crypto-
graphic values for the downloaded files, the database being
accessible by the present system 10 for reference.

The end user device 100 may feature a processor 101,
temporary memory 102, network adapter 103 and long-term
memory 104, wherein the network adapter 103 is respon-
sible for establishing and maintaining a connection with the
internet via Wi-Fi, cellular signal, wired connection(s), etc.
The end user device communicates with both the cyberse-
curity system’s 10 internal components as well as external
websites, exchange servers, file shares, etc. End users may
activate the remote validation cybersecurity system 10 via
inputs (received by the device’s processor 101) or the
system 10 may sit in residence within the end user’s web
browser or another application. By being in constant opera-
tion within a web browser, etc. the system 10 will be
constantly active and monitoring end user activity for files,
web pages, etc. which need to be validated prior to download
and/or opening upon an end user device.

The validation is carried out by the end user device’s 110
processor 101 and memory 102 with the validation infor-
mation being obtained from any number of resources. One
of the most useful methods to validate a file is to examine its
hash data. A hash is a unique digital value that is generated
according to a file’s contents. If the file has been changed in
any way, the hash value changes as well. File hashes are
generated in accordance with several different standards and
typically published by companies offering downloads. The
present system 10 can obtain these reference hash values via
data integration, data scraping, automated search functions,
and/or via manual user input. No matter the method the
reference hash value is obtained by the system 10, it is then
compared with the hash of the downloaded file to confirm
they match. If the two separately derived hash values match
(the reference value provided by the content publisher and
the value associated with the actual file downloaded) this
means the content of the downloaded file must be the same
and provide extra confidence in the validity of a download.

Other methods of validation could also be combined with
or used in place of file hashes. Similar to file hashes, digital
signatures can also be utilized to confirm the content of a file
has not been changed but go a step further in that some
digital signatures are actually unforgeable. The use of a Full
Domain Hash (FDH) digital signature scheme is one notable
example of a method of file validation that is purported to be
unbreakable. Similar to the use of the more basic file hashes
mentioned above, this method of cybersecurity validation
also calls for the system 10 to download a file first to an
intermediary (e.g., the temporary memory 102 of an end user

US 10,505,736 B1

5

device or the internal database 130 of the system 10 (see
FIG. 3)) where the digital signature can be verified using the
signer’s public key.

It should also be noted that in the example above, the
entire file is downloaded to the end user device’s temporary
memory 102. However, for large files and large-scale imple-
mentations of the present system 10, the download of an
entire file may be impractical due to storage limitations and
concerns around speed of validation (the need to, in essence,
download the file twice). For these situations, the present
system 10 may be configured to perform only a partial file
download or download file metadata to the extent needed to
validate the file; then allow the file to be fully downloaded
by the end user. For example, a software publisher may
create a small, readily downloaded file which is directly
linked to the content of a larger file package to be down-
loaded to enable more efficient validation.

Alternatively, a file which exceeds the size of an end user
device’s RAM (temporary memory 102) may be down-
loaded in part to the end user device’s temporary memory
102 with the rest being downloaded to an intermediate
database 130 (see FIG. 3). In this way, the system 10 can
validate files no matter their size.

FIG. 2 is a flowchart which illustrates how a remote
validation cybersecurity system 10 validates a file down-
load. As shown in FIG. 2, at a first step 201 an end user
requests the download of a file. The file to be downloaded
may be any self-contained piece of information (e.g., an
executable file, an email, web page, etc.) hosted on a
website, web server, file server, etc. The request for down-
load may be made via an end user device 100 with the
system 10 then downloading all or part of the indicated file
into the end user device’s temporary memory 102 (step 202).
Once download to the temporary memory 102 is complete,
the system 10 then analyzes the file that was downloaded to
determine its actual, current cryptographic values (step 203).
Most cryptographic values are derived from the current
actual content of a file which enables computerized systems
to detect if the content of a given file has changed or not. The
hash value of a given file is one such cryptographic value
and, in this example, once the hash value or another cryp-
tographic value for the downloaded file is derived by the
system 10, it is then checked with a reference cryptographic
value provided by the file download provider to ensure the
file downloaded is the actual file provided by the content
host (step 204). If the two cryptographic values provided
match, the system 10 will then enable the end user to access
the file on their end user device 100 (step 205).

FIG. 3 is an overview diagram of a remote validation
cybersecurity system 10 featuring an intermediate server
120. As shown in FIG. 3, an end user may access a web
browser 110 via their end user device 100 (e.g., desktop
computer, laptop, smartphone, tablet, etc.). From the web
browser 110 they may browse the internet 140 as normal,
with the end user device 100 making contact with various
external servers 150 which host websites, file shares, etc. via
a processor 151, memory 152, and networking adapter 153.
When an end user elects to download digital content (e.g., a
file, a webpage, an email, etc.) the remote validation cyber-
security system 10 in this embodiment first contacts the
external server 150 which host the to-be-downloaded con-
tent. Communication with the external server 150 is carried
out by the system’s 10 internal server 120, with the digital
content downloaded to an internal database 130. This inter-
nal database 130 acts as a sort of quarantine area for the
downloaded digital content, with the content being held
remotely to the end user device(s) 100 in the internal

10

15

20

25

30

35

40

45

55

60

65

6

database 130 until the content’s hash information, digital
signature(s), etc. are confirmed by the system 10.

The end user device 100 may feature a processor 101,
memory 102, and network adapter 103, wherein the network
adapter 103 is responsible for establishing and maintaining
a connection with the internet via Wi-Fi, cellular signal,
wired connection(s), etc. The end user device communicates
with both the cybersecurity system’s 10 internal components
(e.g., internal server 120, internal database 130) as well as
external websites, exchange servers, file shares, etc. End
users may activate the remote validation cybersecurity sys-
tem 10 via inputs (received by the device’s processor 101
and memory 102) or the system 10 may sit in residence
within the end user’s web browser or another application. By
being in constant operation within a web browser, etc. the
system 10 will be constantly active and monitoring end user
activity for files, web pages, etc. which need to be validated
prior to download to an end user device.

For example, if an embodiment of the present system 10
was embedded as part of a web browser 110 (or a plug-in
extension) it could monitor every web page an end user
visits. When an end user visits a website containing file
downloads, the system 10 (specifically its centralized server
120) will detect that the end user has the potential to
download a file by examining the content of the given web
page. Such analysis is performed by one or more functional
portions of computer code stored in the centralized server’s
memory 122 and acted upon by the server’s processor 121.
The code, in this embodiment, directs the internal server 120
to act as a go-between for the end user device 100 and
external server 150 when an end user elects to download a
file. In this example, when the end user clicks upon a
browsed webpage to download a file, the file to be down-
loaded is not immediately downloaded to the end user’s
device 100. Instead, the file is first downloaded by the
internal server 120 to an internal database 130 where the
system 10 validates the file. Once the file is validated, it can
then be downloaded from the internal database 120 to the
end user device 100.

The wvalidation, in this example, is carried out by the
internal server’s 120 processor 121 and memory 122 with
the validation information being obtained from any number
of resources. One of the most useful methods to validate a
file is to examine its hash data. A hash is an alphanumeric
string that’s generated according to a file’s contents. If the
file has been changed in any way, the hash value changes as
well. File hashes are generated in accordance with several
different standards and typically published by companies
offering downloads. The present system can obtain these
reference hash values via data integration, data scraping,
automated search functions, and/or via manual user input.
No matter the method the reference hash value is obtained
by the system 10, it is then compared with the hash of the
downloaded file to confirm they match. If the two separately
derived hash values match (the reference value provided by
the content publisher and the value associated with the
actual file downloaded) this means the content of the down-
loaded file must be the same and provide extra confidence in
the validity of a download.

Other methods of validation could also be combined with
or used in place of file hashes. Similar to file hashes, digital
signatures can also be utilized to confirm the content of a file
has not been changed but go a step further in that some
digital signatures are actually unforgeable. The use of a Full
Domain Hash (FDH) digital signature scheme is one notable
example of a method of file validation that is purported to be
unbreakable. Similar to the use of the more basic file hashes

US 10,505,736 B1

7

mentioned above, this method of cybersecurity validation
also calls for the system 10 to download a file first to an
intermediary (e.g., the internal database 130) where the
digital signature can be verified using the signer’s public
key.

Blockchain technology may also be utilized by the system
10 to verify the content of a file, web page, etc. Blockchain
may function, for file validation, by keeping a public ledger
of transactions which have occurred within a given file. The
changes made to the file are all part of the blockchain record
for a given file. This record is stored as a key which can be
validated by a decentralized system of computers, wherein
the key can be easily validated via mathematical calculation
but is impossible to replicate. If the blockchain key for a file
does not match what is present in the public ledger, the
system 10 will detect this mismatch and prevent the end user
from downloading a suspect file.

It should be noted the various system components shown
are separated for ease of understanding and are fully realized
as being potentially integrated into one physical device or a
decentralized cloud-based system.

It should also be noted that in the example above, the
entire file is downloaded to the internal database 130.
However, for large files and large-scale implementations of
the present system 10, the download of an entire file may be
impractical due to storage limitations and concerns around
speed of validation (the need to, in essence, download the
file twice). For these situations, the present system 10 may
be configured to perform only a partial file download or
download file metadata to the extent needed to validate the
file; then allow the file to be fully downloaded by the end
user. For example, a software publisher may create a small,
readily downloaded file which is directly linked to the
content of a larger file package to be downloaded to enable
more efficient validation.

FIG. 4 is a flowchart which illustrates how a remote
validation cybersecurity system 10 validates a file down-
load. As shown in FIG. 4, at a first step 401 an end user
requests the download of a file. The file to be downloaded
may be any self-contained piece of information (e.g., an
executable file, an email, web page, etc.) hosted on a
website, web server, file server, etc. The request for down-
load may be made via an end user device 100 with the
system 10 then downloading all or part of the indicated file
to an intermediate server 120 and database 130 (step 402).
Once download to the intermediate database 130 is com-
plete, the system 10 then analyzes the file that was down-
loaded to determine its actual, current cryptographic values
(step 403). Most cryptographic values are derived from the
current actual content of a file which enables computerized
systems to detect if the content of a given file has changed
or not. The hash value of a given file is one such crypto-
graphic value and, in this example, once the hash value or
another cryptographic value for the downloaded file is
derived by the system 10, it is then check with a separate
reference cryptographic value provided by the file download
provider (external server 150) to ensure the file downloaded
is the actual file provided by the content host (step 404). If
the two cryptographic values provided match, the system 10
will then enable the end user to download the file to their end
user device 100 (step 405). Download of the verified file is
then enabled from the internal database 130 to the end user
device 100.

It should be noted that the cryptographic value(s) pro-
vided for file verification can come from the file download
provider, but also be sourced from other locations. One
example of this could be a device driver for a personal

25

35

40

45

50

55

60

65

8

computer running Microsoft Windows. The software com-
pany which created the device driver could provide the file
download from their own file server, with a separate server
hosted by Microsoft providing the file hash for verification.
In this way, Microsoft could in essence but their “seal of
approval” on third party software.

It should be noted that in ultra-secure settings, the veri-
fication steps mentioned above can be run in sequence so,
the steps discussed in FIG. 2 could be coupled with the steps
discussed in FIG. 4 to verify the cryptographic values
associated with a file when downloaded from an external
server 150 to the internal database 130 and then verified
again when downloaded from the internal database 130 to
the end user device 100.

FIG. 5 is an initialization webpage of the remote valida-
tion cybersecurity system 10. As shown in FIG. 5, the
remote validation cybersecurity system 10 may be integrated
into the programming of a webpage or web browser 110. In
this example, the webpage, loaded within the web browser
110, features JavaScript coding which downloads a file into
the temporary memory 102 from a remote host (external
server 150) and then verifies the file’s cryptographic hash.
To begin such a process, the end user may initialize the
system 10 by clicking a button 501 to download the file from
the remote, external server 150 to the temporary memory
102. The webpage also shows the cryptographic value 502,
in this case a hash value, which is supposed to match what
is derived by the system 10 for a given file. If the values
match, the file can then be accessed by an end user (see FIG.
6) or, if there is a failure in verification, the file will be
purged from the end user device’s temporary memory 102
without the file ever having access to the end user’s hard
disk drive (e.g., the file is held remotely to the vulnerable
portions of an end user device 100 until verification is
complete).

Alternatively, the present system 10 may enable end users
to still download a file even if the mismatch between hashes,
etc. exists. In this embodiment, the system 10 would inform
the end user of the mismatch and allow the end user to
proceed with the download after the mismatch notification is
displayed.

FIG. 6 is a download enabled webpage of the remote
validation cybersecurity system 10. As shown in FIG. 6,
once an end user initializes the system 10 (see FIG. 5) it will
download the requested file and verify its associated cryp-
tographic values. In this example, the verification has been
successful with a confirmation message 602 displayed for
the end user. This confirmation message 602 may feature the
one or more cryptographic values 502 verified by the system
10 to enable an end user to visually compare the values as
well. End users are also provided with a download link 601
which will download and/or transfer the verified file from
the temporary memory 102 to the permanent memory 104
(e.g., hard disk drive, cloud drive, etc.) of the end user
device 100.

FIG. 7 is a verified file opened upon an end user device
100. As shown in FIG. 7, once a file has been verified by the
system 10, it can be accessed upon the end user’s device
100. In this case, a picture of the earth was downloaded from
an external server 150. It should be noted that the present
system may be integrated into a single webpage, web
browser, but may also be integrated into various programs,
applications, etc. running on a given end user device 100.
For example, an email client may verify each of the cryp-
tographic values associated with each email received by a
given end user and/or verify the cryptographic values asso-
ciated with each attachment to each email received.

US 10,505,736 B1

9

It should be noted that various changes and modifications
to the presently preferred embodiments described herein will
be apparent to those skilled in the art. Such changes and
modifications may be made without departing from the spirit
and scope of the present invention and without diminishing
its attendant advantages.

We claim:

1. A method of verifying the integrity of a downloadable
file comprising the steps of:

requesting a download of a file hosted by a first server via

a download requesting device in communication with
the first server, wherein the download requesting device
includes a web browsing application through which the
download is requested and a web-browser temporary
memory;

downloading the file into the web-browser temporary

memory while preventing the file from being opened or
executed by the download requesting device;

within the web browsing application, analyzing the file to

derive a cryptographic value of the file;

within the web browsing application, comparing the

derived cryptographic value of the file with a reference
cryptographic value associated with the file hosted by
a second server, wherein the download requesting
device’s access to the reference cryptographic value is
not routed through the first server; and

only when the derived cryptographic value of the file

matches the reference cryptographic value associated
with the file, enabling the file to be opened, executed,
or saved by the download requesting device.

2. The method of claim 1, wherein the file is a web page.

3. The method of claim 1, wherein the file is an email.

4. The method of claim 1, wherein analyzing the file to
derive a cryptographic value of the file includes deriving a
cryptographic hash.

5. The method of claim 1, wherein analyzing the file to
derive a cryptographic value of the file includes deriving a
digital file signature.

6. The method of claim 1, wherein analyzing the file to
derive a cryptographic value of the file includes analysis of
a blockchain key.

7. The method of claim 1, wherein the steps of analyzing
the file to derive a cryptographic value of the file and
comparing the derived cryptographic value of the file with
the reference cryptographic value are implemented by way
of scripting provided by the second server.

8. The method of claim 1, wherein the steps of analyzing
the file to derive a cryptographic value of the file and
comparing the derived cryptographic value of the file with
the reference cryptographic value are implemented by way
of programming in the web-browsing application.

9. The method of claim 1, wherein when the derived
cryptographic value of the file does not match the reference
cryptographic value associated with the file, the file may still

10

15

20

25

30

35

40

45

50

10

be opened, executed, or saved by the download requesting
device only after a notification of the mismatch is displayed
upon the download requesting device.

10. A system, comprising:

an electronic device including a web browsing application

through which the download is requested and a web-
browser temporary memory; wherein

in response to requesting a download of a file hosted by

a first server via a download requesting device in
communication with the first server, downloading the
file into the web-browser temporary memory while
preventing the file from being opened or executed by
the download requesting device;

within the web browsing application, analyzing the file to

derive a cryptographic value of the file;

within the web browsing application, comparing the

derived cryptographic value of the file with a reference
cryptographic value associated with the file hosted by
a second server, wherein the download requesting
device’s access to the reference cryptographic value is
not routed through the first server; and

only when the derived cryptographic value of the file

matches the reference cryptographic value associated
with the file, enabling the file to be opened or executed
by the download requesting device.

11. The system of claim 10, wherein the file is a web page.

12. The system of claim 10, wherein the file is an email.

13. The system of claim 10, wherein analyzing the file to
derive a cryptographic value of the file includes deriving a
cryptographic hash.

14. The system of claim 10, wherein analyzing the file to
derive a cryptographic value of the file includes deriving a
digital file signature.

15. The system of claim 10, wherein analyzing the file to
derive a cryptographic value of the file includes analysis of
a blockchain key.

16. The system of claim 10, wherein the steps of analyz-
ing the file to derive a cryptographic value of the file and
comparing the derived cryptographic value of the file with
the reference cryptographic value are implemented by way
of scripting provided by the second server.

17. The system of claim 10, wherein the steps of analyz-
ing the file to derive a cryptographic value of the file and
comparing the derived cryptographic value of the file with
the reference cryptographic value are implemented by way
of programming in the web-browsing application.

18. The method of claim 10, wherein when the derived
cryptographic value of the file does not match the reference
cryptographic value associated with the file, the file may still
be opened, executed, or saved by the download requesting
device only after a notification of the mismatch is displayed
upon the download requesting device.

#* #* #* #* #*

